If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+2y=15
We move all terms to the left:
2y^2+2y-(15)=0
a = 2; b = 2; c = -15;
Δ = b2-4ac
Δ = 22-4·2·(-15)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{31}}{2*2}=\frac{-2-2\sqrt{31}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{31}}{2*2}=\frac{-2+2\sqrt{31}}{4} $
| 2x-8/9=1/9-2x | | 0.3x=-0.1 | | X=1200-11y/7 | | 2(8-3x)=12x+17 | | 2/3*3y+6=10 | | 16x²+40x=-25 | | 3x-3(-4(x-3)+5x)=7x-8 | | -8=-10+x2 | | -3u-9=-6u+18 | | 2^x=0,625 | | 0.5/x=1.25/5 | | 2^2b-1⋅2^b=16 | | 5y/3+3=y+7 | | (5/3)+3=y+7 | | (5/3)+3=y=7 | | 3y-2/4+2y+3/3=2/3 | | 2(x-6)=-6(2-1/3) | | -8x^2+7x-1x=-2 | | 8x^2+7x-1x=-2 | | 3y+2=2(y+2) | | 5x-5=3(x+1) | | 3x+8=143x+8=14 | | 2x²-12x-15=0 | | 77/6x+181/2=7/2x+28 | | 4*x^2=400 | | n^2+n=462 | | (1)/(3x)+(4x)/(6)=1 | | 4m=3=5 | | 4x2-11=14 | | 1.58=(0.15-x)/x | | 5(x1/2)=45 | | 3x+60=x+50=3 |